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1. Introduction / Background

> Human and climate drivers of climate

Fire, humans and climate
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> Human and climate drivers of climate

Fire, humans and climate
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> Human and climate drivers of climate

Fire impact on the carbon cycle

van der Werf et al., 2004
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1. Introduction / Background

> Human and climate drivers of climate

Fire impact on the carbon cycle

van der Werf et al., 2004

Observed

Inversion model

..............

Forward model

During 1997-98, fire emissions explained
~2/3 of the observed CO, growth rate

1997 1998 1999 2000 2001
Year



1. Introduction / Background

> Smoke emissions and the direct, semi-direct & indirect aerosol effects

Fire aerosol emissions - an introduction

Total global fire emissions: 2-4 Pg Cyr' 123

Deforestation emissions: 0.6-0.7 Pg C yr
(8% of fossil fuel emissions)

Smoke emissions: 50-100 Tg yr! 134

5-10% of smoke emission mass is black carbon >

'van der Werf, et al,, 2010 || *Wiedinmyer etal., 2011 || 3Reid etal., 2009 || “Bauer and Menon, 2012 || °Reid et al., 2005
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> Smoke emissions and the direct, semi-direct & indirect aerosol effects

Fire aerosol emissions - an introduction

Total global fire emissions: 2-4 Pg Cyr' 123

Deforestation emissions: 0.6-0.7 Pg C yr
(8% of fossil fuel emissions)

Smoke emissions: 50-100 Tg yr! 134

5-10% of smoke emission mass is black carbon °

Fires contribute ~30% of total particulate (smoke) and
black carbon emissions worldwide. °

SLamarque et al.,, 2010

'van der Werf, et al,, 2010 || *Wiedinmyer etal., 2011 || 3Reid etal., 2009 || “Bauer and Menon, 2012 || °Reid et al., 2005



1. Introduction / Background

> Smoke emissions and the direct, semi-direct & indirect aerosol effects

Fire aerosol emissions - an introduction

direct radiative effect: aerosols absorb
and scatter SW radiation
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Fire aerosol emissions - an introduction
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semi-direct radiative effect:

Ackerman et al., 2000



1. Introduction / Background

> Smoke emissions and the direct, semi-direct & indirect aerosol effects

Fire aerosol emissions - an introduction
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Ackerman et al., 2000
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1. Introduction / Background

> Smoke emissions and the direct, semi-direct & indirect aerosol effects

Fire aerosol emissions - an introduction

first indirect effect: aerosols decrease
cloud droplet size, increase albedo

f::’ﬂ:f "\_;/A

-

Twomey, 1977
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> Smoke emissions and the direct, semi-direct & indirect aerosol effects

Fire aerosol emissions - an introduction

second indirect effect:
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Fire aerosol emissions - an introduction

second indirect effect: aerosols increase

cloud lifetime, reduce precipitation (?)

Albrecht, 1989



1. Introduction / Background

> Radiative forcing from fire aerosols

Global fire forcing (aerosols)

Biomass burning I

Waste burning

Transportation |
M Aerosols
Domestic / Residential .
Nitrous Oxides
Industrial processes . B Methane
Agricultural practices HE * Carbon Dioxide
B CFC
Shipping B Ozone
Power generation H
TOTAL - [ N |
[ | | | I [ | | | 1
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> Global radiative forcing (RF) from all aerosols is —=0.5 W m-2 from: Bauer et al., 2012

»RF from fire aerosols is +0.005 W m-2
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> Global fire patterns

Global distribution of fire emissions

Annual Mean (1997-2009) GFED3.1 Carbon (g C m? yr')
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> Global fire patterns

High burning regions

Annual Mean (1997-2009) GFED3.1 Carbon (g C m?yr?)
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1. Introduction / Background

> Science goals and objectives

Hypotheses

1. Firesin tropical Asian peat forests generally smolder
and are injected within the boundary layer.

2. Climate impacts of fire aerosols during El Ninho
drought provide evidence of a positive feedback.

3. Global climate is strongly influenced by the radiative
and microphysical effects of fire aerosols; tropical
forests near source regions are particularly
vulnerable to climate changes.
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>

Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)

southeast + equatorial Asia
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1. Introduction / Background
Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)

>
Map of equatorial Asia
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1. Introduction / Background

> Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)

Link between ENSO and fire
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Link between ENSO and fire
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Link between ENSO and fire
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1. Introduction / Background

> Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)

Fire during El Nino driven by low precipitation

10000 : : . : 500 » Exponential relationship; almost
piecewise w/ critical value ~100 mm
month’

—— Terra MODIS AFD (x 10) vs.
TRMM PPT (R? = 0.95)
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» High burning in 1997 and 2006
associated with average dry season
precipitation ~50 mm month’

6 —— Optimized emissions vs.
4000 t GPCPv2 PPT (R?=0.95) 1200
» Very low burning in 1998, 1999, 2000
associated with average dry season

1100
precipitation >150 mm month-’

2000

Active fire detections (AFD) year -
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from: van der Werf et al., 2008



1. Introduction / Background

> Burning in equatorial Asia (Indonesia, Malaysia, Papau New Guinea)

Fire during El Nino driven by low precipitation

» Fairly recent phenomenon, especially on Borneo, associated with
changing migration/settlement patterns
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Visibility records from airports record no
significant smoke events prior to 1985
despite incidence of drought and El Nifo.

from: Field et al., 2009



2. Plumes in equatorial Asia

>

Temporal, spatial and vertical characterization of fires and plumes

Extreme fire events during El Nifio

» 10-year time series of fire in equatorial Asia from MODIS/MISR
»Gray bars indicate El Nifio events; 80% of fires during 2001-2009 during El Nifio
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from: Tosca etal., 2011



2. Plumes in equatorial Asia

> El Nino-fire feedback loop

Proposed feedback loop
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2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Characterizing the vertical extent of smoke

INITIAL QUESTION: At what vertical level is smoke primarily injected?

from: Tosca etal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Characterizing the vertical extent of smoke

INITIAL QUESTION: At what vertical level is smoke primarily injected?

WHY WE CARE: Spatially expansive regions of smoke have potentially
large climate effects; how do we represent smoke plumes in a climate
model?

from: Tosca etal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Characterizing the vertical extent of smoke

1. Estimating smoke height using the MISR Interactive Explorer (MINX)

Height (m)

Figure 1. (left) Nadir view of plume showing digitized outline (dashed green line) and interpreted wind
direction (yellow arrow). (right) Color-coded, wind-corrected heights superposed on nadir camera view.




2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Characterizing the vertical extent of smoke

1. Estimating smoke height using the MISR Interactive Explorer (MINX)
|
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2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Plume locations

2. Digitized 317 plumes on Borneo and Sumatra from 2001-2009
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“other” rainforest
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00
2°S
4°3
6°S —
95°E 100°E 105°E 110°E 115°E

120°E

from:Toscaetal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Plume locations - insight on injection height?

2. Digitized 317 plumes on Borneo and Sumatra from 2001-2009
6°N

peat forest
“other” rainforest
4°N
2°N
OO
2°S
4°S
6°S S = : | —
95°E 100°E 105°E 110°E 115°E 120°E

» 75% of plumes in “peat forests” - high soil carbon, high moisture content

» How will this affect injection height?
from:Toscaetal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Characterizing the vertical extent of smoke

» 96% of all plumes injected into the Atmospheric Boundary Layer

from:Toscaetal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Characterizing the vertical extent of smoke

» 96% of all plumes injected into the Atmospheric Boundary Layer (ABL)
» Plumes on Borneo higher during El Nifo (dry years), possibly owing to high ABLs

a) Borneo
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Mean height (EI Nifio) =724+ 16 m

Mean height (La Nina) =633 £23 m
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from:Tosca etal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Characterizing the vertical extent of smoke

» 96% of all plumes injected into the Atmospheric Boundary Layer (ABL)
» Plumes on Borneo higher during El Nifo (dry years), possibly owing to high ABLs
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from:Tosca etal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Smoke plume evolution to smoke clouds

» Over time, plumes evolve into “smoke clouds” — regionally expansive, persistent
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2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Smoke plume evolution to smoke clouds

» Over time, plumes evolve into “smoke clouds” — regionally expansive, persistent
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2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

Smoke plume evolution to smoke clouds

» Over time, plumes evolve into “smoke clouds” — regionally expansive, persistent

» Results from CALIPSO confirm MISR observations.
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from:Toscaetal., 2011



2. Plumes in equatorial Asia

> Temporal, spatial and vertical characterization of fires and plumes

August-October average aerosol optical depth

“high fire” “high fire — low fire”
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from: Tosca etal,, 2010



3. Fire-climate feedbacks

> Climate response to smoke aerosols in equatorial Asia

August-October average aerosol optical depth

How does climate respond to an aerosol forcing of this magnitude?

from: Tosca etal,, 2010



3. Fire-climate feedbacks

> Climate response to smoke aerosols in equatorial Asia

Radiative forcing from 1997 fires

LATITUDE
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Podgorny et al., 2003
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3. Fire-climate feedbacks

Climate response to smoke aerosols in equatorial Asia

Method for simulating climate response

1.

Force the Community Atmosphere Model (CAM3) w/ monthly-
varying, annually repeating 1997 fire emissions from GFED, version
21

Force a second simulation with repeating 2000 fire emissions from
GFEDv2.

Smoke injected into the boundary layer — consistent with injection
height work.

Aerosols interacted with radiation directly but not cloud
microphysics, therefore our simulations consider the direct and
semi-direct effects

Each simulation was: 10 year spin-up (not included in averages) +
30 year annually-repeating.

“Anomalies” are the difference between HIGHFIRE and LOWFIRE.

van der Werf et al., 2006



3. Fire-climate feedbacks

> Climate response to smoke aerosols in equatorial Asia

Seasonal mean climate forcing (HIGHFIRE — LOWFIRE)

] oa) Sum of BC and OC emissions

» Smoke (BC & OC) emissions peak from
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3. Fire-climate feedbacks

> Climate response to smoke aerosols in equatorial Asia

Seasonal mean climate forcing (HIGHFIRE — LOWFIRE)

] oa) Sum of BC and OC emissions

» Smoke (BC & OC) emissions peak from
August through November over Indonesia

f—

» Aerosol optical depth also peaks during
this time, with maximum area-averaged
anomalies of 0.5-0.6 during September
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from: Tosca etal,, 2010
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3. Fire-climate feedbacks

Climate response to smoke aerosols in equatorial Asia

Seasonal mean climate response

°C
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» Smoke (BC & OC) emissions peak from
August through November over Indonesia

» Aerosol optical depth also peaks during
this time, with maximum area-averaged
anomalies of 0.5-0.6 during September

» Surface cooling, atmospheric warming,
near-zero (slightly positive) TOA RF.

» Ocean and land temperatures cooled
significantly (-0.6°C in October) — one
month lag in response to forcing

» Precipitation signficantly reduced (10%)
during September and October

» Evaporation also decreases = drought
conditions develop.

from: Tosca etal,, 2010
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3. Fire-climate feedbacks

Climate response to smoke aerosols in equatorial Asia

Seasonal mean climate response
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» Smoke (BC & OC) emissions peak from
August through November over Indonesia

» Aerosol optical depth also peaks during
this time, with maximum area-averaged
anomalies of 0.5-0.6 during September

» Surface cooling, atmospheric warming,
near-zero (slightly positive) TOA RF.

» Ocean and land temperatures cooled
significantly (-0.6°C in October) — one
month lag in response to forcing

» Precipitation signficantly reduced (10%)
during September and October

» Evaporation also decreases = drought
conditions develop.

from: Tosca etal,, 2010



3. Fire-climate feedbacks

> Climate response to smoke aerosols in equatorial Asia

Mechanisms for precipitation response

20°N

» Large area of reduced surface temperatures
10°N
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from: Tosca etal,, 2010



3. Fire-climate feedbacks

> Climate response to smoke aerosols in equatorial Asia

Mechanisms for precipitation response

PO°N : -

i % ‘Aug-Oct Temp (°C)
10°N - " % | L

I
[SY = “\
) 5= N
10°S - %Wﬁ N '
20°S p | | y : | —
90°E 105°E 120°E 135°E 150°E 165°E 1807
| | | | | .

» Large area of reduced surface temperatures

» Increased solar heating aloft
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3. Fire-climate feedbacks

Climate response to smoke aerosols in equatorial Asia

Mechanisms for precipitation response
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» Large area of reduced surface temperatures
» Increased solar heating aloft

» Increase subsidence at the surface, limit
convection = reduce precipitation.
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2. Plumes in equatorial Asia

> El Nino-fire feedback loop

Evidence for a feedback ...
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2. Plumes in equatorial Asia

> El Nino-fire feedback loop

Evidence for a feedback ...
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Global response?

BIG QUESTION: WHAT IS THE GLOBAL CLIMATE IMPACT OF FIRE AEROSOLS?
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Global response?

BIG QUESTION: WHAT IS THE GLOBAL CLIMATE IMPACT OF FIRE AEROSOLS?

Caveat: We want to accurately simulate the magnitude of the forcing -
requires matching simulated optical depths to observations.

from: Tosca etal., 2012



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Method for simulating climate response

1.  Force Community Atmosphere Model, version 5 (CAM5) with monthly
varying emissions from 1997-20009.

2. Scale emissions in burning regions by optimizing simulated optical depths
using MISR/MODIS satellite data

3. Experimental simulations:

A. 15-year spin-up; 4 cycles of monthly repeating emissions (1997-2009),
52 years total (FIRE)

B. 15-year spin-up; no smoke emissions, all other variables same as (A).
(NOFIRE)

4. Climate “response”to fire aerosols is interpreted as FIRE — NOFIRE.
Simulations consider direct, semi-direct, & indirect effects

from: Tosca etal., 2012



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Scaling emissions
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Scaling emissions

a) South America » Choose regions where fire aerosols are dominant contributor
N i to area-wide optical depth
[ot i || » CAMS5 massively underestimates optical depth from fires —
scmmemt | remedy = scale emissions upward.
a) South America
408 sow T r T Golw T T i 40‘w T 1.0 :I T T 7T I T 11 ] T 711 I L I L l T 1 T I L I T 17T l T 17T I L
. 08 - [—— original (CAMS)
b) southern Africa I observations (MISR, MODIS)
b 0.6 |- 5
" - 04 A
108 _l Ascension Island L ..M:Is:o%a ? 02 :_ ,;'l‘ll\ 1
208 :— 0.0 L1 L1 L1 L1 L1 I TR T i IR
. : . e b) southern Africa
10 :I T 17T I LI I LU I T 1 1 | T 1 1 l T 1 1 T 1 1 T 11 l T 17T I T 11
c) equatorial Asia L os L
! 1 1 [7)) " -
bon H 3 -
= 0.6 — 4
Bac Lieu c r i -
b =) B i i
0 - @ Singapore Ll E 0.4 — i I'. : v‘
& ¥ \
Darwin @@ Jabiru < 0.2 = J
pos ﬁ & T 00 _I 11 | L1l I 111 L1l | - l | - L1 1 L1 I 11 | -

from: Tosca etal., 2012



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Scaling emissions
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Annual climate response

from: Tosca etal., 2012



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Optical depth “forcing”

» Globally, aerosol optical depth increased 13% (+0.02) due to fire aerosols
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stippling is 95% confidence interval (student t-test)
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Surface radiation response

> All-sky net surface radiation decreased 1% (1.7 W m)

90°N

from: Tosca etal., 2012



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Surface tem perature response

» Surface temperature declined 0.3°C
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Zonal climate response

> Largest response near the equator

» Optical depth peaked near 5°N
during DJF and 5°S during JJA

» Major reduction in precip near the
equator during all seasons

from: Tosca etal., 2012
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Zonal climate response

— 0.12
> Largest response near the equator ] g(‘)z <
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Precipitation response - circulation changes?

d) Precipitation ( md”)

» Though precipitation declined globally, there were large decreases at the equator, countered by
slight increases to the north and south.

» Reductions over tropical forests = fires may increase their vulnerability to climate change

from: Tosca etal., 2012



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Hadley Circulation changes

»Diagnose Hadley Circulation using mass meriodional stream function (),

P(.p) - zmcg"s("’) [1v(6,p)1dp

Which is equal to the rate at which mass is being transported meridionally (with positive
values indicating northward transport) between that pressure level and the top of the

atmosphere

from: Tosca etal., 2012
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> Climate response to smoke aerosols globally

Hadley circulation changes, a summary

mid-troposphere heating from BC absorption
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Hadley circulation changes, a summary

mid-troposphere heating from BC absorption

+

surface cooling (especially in equatorial regions)

weakened equatorial convection
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Hadley circulation changes, a summary

weakened

Pressure (mb)

shaded = upward velocities
(convection)

unshaded = downward velocities
(subsidence)

from: Tosca et al,, 2012 vertical velocity (w)



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Hadley circulation changes, a summary

mid-troposphere heating from BC absorption

+
surface cooling (especially in equatorial regions)
weakened equatorial convection

weaker Hadley circulation,

slight poleward expansion of descending branches

from: Tosca etal., 2012



3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Hadley circulation changes

Annually-averaged vy

» Data from ECMWF matches well
with output from CAM5

Pressure (mb)
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3. Fire-climate feedbacks

> Climate response to smoke aerosols globally

Hadley circulation changes

Annually-averaged vy

Pressure (mb)

from: Tosca etal., 2012

» Data from ECMWF matches well
with output from CAM5

» Weaking of the streamfunction
near the equator - in regions of
highest AOD.

» Slight expansion of the Hadley cell
— consistent with Allen et al., (2012)

and mid-latitude BC warming



4. Future work

»  Ecosystem response to fire

Total tropical forest ecosystem response to fire aerosols

» Climatic changes (precipitation, temperature)

» Direct deposition of nutrients (from aerosols) on ecosystems
» Changes in albedo / surface fluxes

> More diffuse radiation from aerosols
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5. Conclusions

> Conclusions

In conclusion

(1) Indonesian smoke plumes are injected into the boundary layer;
burning occurs primarily in peat forests and during El Nino.

(2) More expansive smoke clouds are higher than plumes, impact climate via
radiative and microphysical effects

(3) Direct fire aerosol forcing (in eq. Asia) during strong burning years
reduces precipitation, increases drought stress and suggests a positive
feedback between fire and drought.

(4) Globally, fire aerosols contribute ~13% to total aerosol optical depth;
reduce surface temperatures 0.3°C

(5) Reduced equatorial convection (from surface cooling, atmospheric
heating, indirect effects) weakens the Hadley circulation; mid-
tropospheric BC warming increases tropical width
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